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Abstract- A boundary element solution is developed for an Imerse elasticity problem. In this
inverse problem. boundary conditions are incompletely specified. Strains can be detcrmined exper­
imentally. in practice. at a number of internal points and uscd as input to completely resolve
these boundary conditions. In this paper. these strains. including random errors. are numerically
simulated. This inverse problem finds applications in the evaluation of residual stress and contact
stress. In contrast to previous studies. the construction of the sensitivity matrix is embedded in the
boundary element formulation thereby avoiding the solution of a series of forward problems.
Further. the effects of prescribed non-zero boundarv conditions and bodv forces are included in the
relation between measured strains and the primary' tractIOn unknowns. ·Unfortunately. the inverse
problem is still ill-posed. Physical constraints are introduced to stabilize the solution. As a result.
the algorithm presented here has reasonable tolerance to error lt1 the measurement of strains.
Numerical examples are given to validate the inverse algorithm. In these examples. the input strains
are numerically simulated. and stable and accurate solutions are obtained with up to ± 5% random
error in the input. ( 1997 Elsevier Science Ltd.

INTRODUCTION

In a forward problem. the governing equation. the boundary conditions. the initial
conditions. the system geometry. and the material properties are all known explicitly. The
purpose of a forward problem is to resolve the field variable(s). In an inverse problem. one
of the terms conventionally specified in a forward problem is not known explicitly. The
purpose of the inverse problem is to determine the unknown quantity using additional
information. which is usually provided by some measured data.

In contrast to the solution of a forward problem. the solution of the inverse problem
is generally ill-posed. The solution of general inverse problems is discussed in Tikhonov
and Arsenin (1977). A review of inverse heat transfer problems can be found in Beck et al.
(1985) and more recently in Alifanov (1994). A survey of inverse problems in mechanics of
materials is given in Bui (1994). Inverse problems find wide applications in engineering
analysis. In this paper. we consider a specific inverse problem which addresses the recon­
struction of an unknown boundary condition in an elastostatics problem.

In a forward elasticity problem, complete boundary conditions are given and responses,
such as displacements. strains and stresses. need to be determined. However, in some
circumstances. boundary conditions are incompletely specified. while the strains or dis­
placements at some points in the domain of interest can be easily measured. An inverse
problem can be formulated to determine the unknown boundary conditions from measured
responses. Once the boundary conditions are found. the responses on the whole domain
can be computed analytically or numerically. In this sense. the inverse approach is a hybrid
technique.

The strains or displacements can be measured on part of the boundary or inside the
domain. When the displacements are measured on the boundary, over-specified boundary
conditions on part of the boundary are usually used to resolve the unknown tractions on
remaining part of the boundary. Another approach is to take strain or displacement
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measurements at interior points in an effort to resolve the unknown tractions. In practice,
internal strains can be measured without any difficulty using standard strain gages for a
two dimensional plane stress problem. For a two dimensional plane strain problem or a
three dimensional problem, internal strains can also be measured using embedded strain­
measuring devices, such as optical fiber sensors (Sirkis and Lo, 1994). This type of inverse
elasticity problem is sometimes called the boundary condition reconstruction problem, and
this is the inverse problem considered in this paper.

Maniatty el al. (1989) studied the boundary reconstruction inverse problem using the
finite element method (FEM). Schnur and Zabaras (1990) introduced a 'spatial smoothing'
technique and a 'key node' method in their FEM solution of the inverse problem. Zabaras
et at. (1989) presented a solution to the inverse problem for given internal displacement
measurements using an integral approach. Yeih et al. (1993) proposed a regularized solution
to the inverse problem for overspecified boundary conditions. Zhang et at. (1994, 1995)
studied the inverse problem for given internal strain measurements using the boundary
element method (BEM). Recently, Bezerra and Saigal (1995) developed a BEM based
optimization method with analytical evaluation of the gradient of the objective function
for the solution of the inverse problem at hand. Martin et al. (1995) developed a BEM based
algorithm for the reconstruction of unknown boundary tractions. They use overspecified
boundary conditions on a portion of the boundary and singular value decomposition to
solve the problem.

The solution of this inverse problem finds direct application in determining contact
stress between elastic bodies, Kihara et af. (1983) and ada and Shinada (1987). Another
application of this inverse problem is related to determination of residual stress in structural
components. Kihara (1983) calculated residual stress in a plate from stress changes during
cutting processes by the inverse approach. Ueda et at. (1975) and Rybicki et al. (1988)
employed a similar method in studying the material removal method for residual stress
measurement. Zhang et al. (1994) also studied this application of the inverse problem using
HEM.

In this paper. we develop a HEM solution to the boundary condition reconstruction
problem using internal strain measurements as additional inputs. Our algorithm features
three important components. First. the calculation of the sensitivity matrix, which relates
boundary unknowns to strain measurements, is embedded in the BEM formulation. Conse­
quently, the computational effort is significantly reduced in comparison to finite element
solutions. Schnur and Zabaras (1990). and previous BEM solutions, Zhang el al. (1994).
In particular, the computational burden is reduced to the formation of four HEM influence
matrices and the appropriate rearrangement of partitions of the influence matrices. This is
in sharp contrast to previous approaches which require a series of forward solutions
to construct the sensitivity matrix. Second. the effects of prescribed non-zero boundary
conditions and body forces are included in the relation between measured strains and the
primary traction unknowns. This general relation is critical in many practical applications.
For instance, in rolling problems, the effect of the weight of the roller is obviously of
importance and must be accounted for. Third. in addition to aforementioned features of
our algorithm. global equilibrium conditions are introduced as additional constraints to
improve numerical stability and enforce compliance to fundamental physical principles.
These constraints are adjoined through the use of Lagrange multipliers to the least squares
functional which measures the difference between computed and input strains in the L 2

norm.
Numerical examples are presented to validate our inverse algorithm. In these examples,

input strains are numerically simulated. and stable and accurate solutions are obtained
using strains with as much as ± 5% random error.

INVERSE PROBLEM AND ITS APPLICATIONS

Consider the two dimensional elastic body Q shown in Fig. I. The boundary f of Q
consists of three parts: f l , f 2, f" with prescribed displacements UI on f l , prescribed
tractions 12 on f 2, and both displacements u, and tractions t, as unknowns on f,. Strains
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are measured at several internal points close to [,. The inverse problem is to determine t,
from the measured strains. After determining t,. one can further solve for displacements,
strains and stresses over the whole domain through a forward analysis.

Since only linear elasticity is considered here. the measured strains can be related to t,
in matrix form using the following superposition:

[s} = [C] {t, }+ :b} +: d} . ( I )

The matrix [C] is called the sensitivity matrix and has dimension M x N. where M and N
are the number of measured strains and the number of unknown traction components on
[" respectively. Vector {b} accounts for internal strains due to prescribed displacements u\
on [\ and prescribed tractions t2 on [2' and vector [d} accounts for internal strains due to
body forces. Once matrix [C] and vectors [b} and {d: are formulated,: t,} can be determined
from strain measurements. It should be noted that, by including the vectors {b} and [d},
eqn (I) is a general relation, explicitly accounting for body forces and specified nonzero
boundary conditions.

Application to emluation o(contact stress
The contact problem is usually difficult to solve analytically or even numerically,

especially when plastic deformation is involved. To simplify the calculation, different
contact models are assumed. such as perfect bonding contact or sliding contact, frictional
contact or frictionless contact. However. a physical problem usually cannot be simulated
with a single contact model, and, often. a combination of models is required. On the other
hand, direct measurement of the contact stress is often impossible because of the inaccessible
nature of the interface. To avoid these difficulties. an inverse approach can be employed to
resolve the contact stress on [, based on experimental measurements of internal dis­
placement or strain. Since the contact area is not always known in advance. a potential
contact area, which should be large enough to cover the actual contact area, is assumed.
The actual contact area can be easily found after the traction distribution is resolved. The
zero traction area indicates non-contact locations.

Application to residual stress measurement
Residual stress is self-balanced stress locked in an object without the application of

external loads. As a result. it is necessary to relieve residual stress, by cutting or machining
for example. in order to measure it by conventional experimental stress analysis. Residual
stress along the cutting plane prior to cutting can be computed from measurement of the

13(u ~, t~)

* * * * * * * *

11
(u~,t~) u-unknown

k-known
* - measunng points

*

12(u~,t~)
Fig. I. Definition of the inverse problem.
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Fig. 2. Application to residual stress evaluation.

ensuing deformation by solving an inverse problem. This residual stress relieving process
can be regarded as applying an opposite load to the cutting plane of the original object, see
Fig. 2. Kihara et at. (1983) calculated the residual stress field in a plate from stress changes
during cutting. However, in their numerical simulation. no errors in the measurements are
considered and therefore the tolerance of their method to measurement errors remains
unknown.

FORMULATION OF THE SENSITIVITY MATRIX

In FEM solutions. Schnur and Zabaras (1990). and previous BEM solutions, Zhang
et at. (1994). the 'unit load' method was used to compute the elements of the sensitivity
matrix [C] in eqn (I). In this method, a single unit traction component is applied at one
boundary node each time. and strain values at measuring points are obtained through a
forward analysis. These values give one column of the sensitivity matrix. Using this
approach. a total of N forward analyses are required to obtain the matrix. When the number
of unknown traction components on r 3 is large. a considerable amount of computations is
needed. In contrast to the 'unit load' method. the formation of [C]. {b} and {d} in this
paper is embedded in the BEM formulation. thereby avoiding a series of forward analyses.
Consequently. a brief review of the BEM followed by an outline of our approach to the
formulation of [C], {b}. and {d} is given below.

Somigliana's identity provides an expression for internal displacement 11;(~) in terms
of boundary traction t,(x) and boundary displacement Uk(X) as:

UI(~) = r u~(~.x)tdx)df(x)- r t~(~.x)udx)df(x)+ r u~(~,.:)bk(.:)dQ(.:) (2)Jr Jr Jg

where ~ is any point in the domain, Q. x lies on domain boundary. r, and.: is within the
domain. Q. The body force is denoted by bk . The tensors u~ and t~ are fundamental
solutions for displacements and tractions. respectively. and can be found in standard BEM
texts (e.g. Brebbia et at.. 1984). In eqn (2). the domain integral appears only if the distributed
body force terms. bk • are important in the analysis of the problem at hand. By differentiating
the above expression for displacements. strains can be expressed as follows:
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ei;(() = r u:;k(¢,x)tdx)dl(x)- r t~;d¢.x)udx)dl(x)+ r u:;d~,z)bk(z)dn(z) (3)Jr Jr .0

where U~;k and t~;k are strain kernels and can be derived from the fundamental solutions.
After discretizing the boundary and interpolating displacements and tractions within each
element, the above two integral relations can now be written in the following discretized
form:

2K 2;":

U,(¢) = I G'ktk + I HikUk +f
k~O k~O

2K 2/..'

cu(¢) = L £ilktk - L F"kUk +g'J
k~O k~O

(4)

(5)

where K is the number of boundary nodes. Writing eqn (4) for all boundary points and
applying eqn (5) for all M-internal measuring points. one can get the following two
equations in matrix form:

[H]{u} = [G](t} + {f}

{e} = [E]{t} -[F]{u} + [g)

(6)

(7)

where {u} is the vector of nodal displacements and {t} is the vector of nodal tractions.
Matrices [H] and [G] have dimension 2K x 2K and matrices [E] and [F] have dimension
M x 2K. The evaluation of [H] and [G] matrices and the body force terms, {f} and {g}, is
carried out numerically using the standard BEM. see Banerjee (1994). Further, it is noted
that the formulation of [E] and [F] matrices presents no singularity since all the measuring
points are internal.

Rewriting the above two equations to accommodate the specified boundary conditions
I eads to :

UI t I

[HI H, H,] U2 = [G I G2 G,] t2 + {f}

u, t,

U] t I

[e) = -[F] Fe F,] u, +[£1 £, £,] t2 + {g}.

U, t,

(8)

(9)

Up to this point, the standard BEM formulation has been used. We now show that matrix
[C] and vectors {b} and {d} in eqn (I) can be expressed explicitly in terms of components
of the above mentioned four matrices and known boundary conditions.

Since t, is the primary unknown in the inverse problem, it is essential to separate t,
from other unknowns. Moving {t,} and all known boundary conditions to the RHS and
all other unknowns to the LHS in eqn (8) results in :

(10)

t,

or
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(11 )

where {x} = (t 1 U2 u,) T is an unknown vector, (bd is a known vector. The unknown vector
{x} can then be expressed in terms of ttl) and known quantities as follows:

[x} = [A] - I [G,]{ t,} + [A] ] (b d + [Ar I {f})

= [G',]{ t,} + Wd + (f).

Rearranging eqn (9) similarly, the internal strains can be expressed as follows:

(12)

o

or

(14)

where [F'] = [-£} F2 F,), {bJ is a known vector. Substituting eqn (12) into (14) yields
an expression in the form of eqn (I). In particular. we arrive at:

{R} = ([E J ] - [F'][G',D {td + ({be) - [F']{b'l }) + ({g} - [F']{f'})

= [C]{t,}+{b}+{d] (15)

where

{b] = {be: - [F'][b']]

{d} = {g}-[F']{f'}.

(16)

Equation (16) provides explicit expressions for matrix [C] and vectors (b} and {d}. Thus,
the main difference between eqn (15) and eqn (9). which is the standard strain expression
using integral relations, is that the appropriate rearrangement of eqn (8) is incorporated
into eqn (9) in order to arrive at the explicit relations for the sensitivity matrix and the
vectors reflecting the effects of prescribed boundary conditions and body forces. Minimal
effort is needed to implement this formulation in an existing BEM code. If body forces are
negligible for the problem under consideration, the tasks involved are the generation of the
four influence matrices [HJ, [GJ, [E), and [FJ, their appropriate partitioning and rearrange­
ment as outlined above, the inversion of the matrix [AJ, and some numerical matrix
operations. It can be seen that sensitivity matrix [C] and vectors {b} and {d} can be formed
simultaneously with the amount of computations comparable to a single BEM forward
analysis. This has been verified in our numerical computations. This is in sharp contrast to
the common practice of calculating [C] by the 'unit load' method which requires N-BEM
solutions. If the body forces are significant, the vector {d} can then be formed as given in
eqn (16).

COr-;STRAINED LEAST-SQUARES 'v1INIMIZATlON

The unknown vector {t,} is related to the strain measurements through the sensitivity
matrix [C], as shown in eqn (1). Numerical analysis shows that the actual traction dis­
tribution can be resolved by solving (I) provided the strain inputs are exact and M is equal
to N. However, when there is a small amount of error in the strain input, solving eqn (1)
directly usually gives meaningless results. This is because not all the measurements are
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independent, and, as a result, the sensitivity matrix [C] is nearly singular. Instead, improved
results can be obtained using a least-square method to minimize the difference between the
measured strains and the calculated strains. This allows the number of measurements M to
be greater than the number of unknowns N. Even in this overdetermined case, the solution
may still lead to an unreasonable answer. To overcome this numerical sensitivity, Schnur
and Zabaras (1990) introduced "spatial regularization" to impose some smoothing con­
ditions on the unknown variables. The smoothing effects depend on the order of the
regularization and the choice of smoothing parameters. These are difficult to determine a
priori.

The introduction of quantitative constraints is another way to improve tolerance to
errors in input data, as noted by Sutton (1991) and Schnur and Zabaras (1990). Prescribed
traction values at specific points (e.g. zero traction points) are used as constraints both in
Sutton (1991) and Schnur and Zabaras (1990). However, this type of constraint is usually
unavailable in practical applications. In this work, we propose another kind of constraint
in the form of equilibrium conditions.

In the solution of a forward elasticity problem, the global equilibrium conditions are
automatically satisfied. However. in an inverse problem, due to error in measurements,
resolved boundary tractions do not satisfy these conditions in general. Therefore, it is
necessary to apply these equilibrium conditions as additional constraints. A counterpart of
these equilibrium constraints, in the form of conservation of energy, has been used and
found to be important in the solution of the inverse heat conduction problem. Das (1991).

The global equilibrium conditions can be expressed in the following form:

f., ',dr = II

r "dr = Ie
• r,

~

J (t,x-',y)dr=I,.
r,

(17)

The determination of constants 11,12 and 13 depends on the problem to be solved. In some
cases, these constant are simply zero. For example, in the case of residual stress, 110 12 and
13 are zero due to the self-equilibration of the residual stresses. For the contact problem
which involves an elastic body included in another elastic body, as shown in Fig. 3. the
three constants must also be zero in order to keep the internal body in equilibrium. However,
often these constants are not zero, but equal and opposite to the sum of the forces (II and
12) and the moments (/3) acting on the remaining portion of the domain of interest. For
instance, in the plate contract analysis of example 3 shown in Fig. 9. the constants are
determined from the fact that the integrated force acting on the upper plate is balanced by
the contact pressure at the bottom from the bottom plate. However, as will be shown in
the example section, symmetry is invoked in the BEM analysis of this problem; conse­
quently, the moment constraint is explicitly enforced and thus redundant, in this particular
example.

The discretized forms of these constraints are:

(18)

Equation (18) can be written in the following matrix form:
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Fig. 3. Demonstration of the determination of constrall1t constants for contact problems.

[OH t,: = [l). (19)

The matrix [0] is determined only by the problem geometry and discretization used in the
analysis. For example, matrix [0] takes the following simple form for a constant element
model with fixed element lengths:

[01+0 I 0 I 0

I 0 I 0 I (20)

l' -'\"1 .1', -x, J'/I -Xli• 1

where _<s and yi's are coordinates of the boundarY element nodes. For higher order
elements, [0] takes a more complicated form and can be evaluated either analytically or
numerically.

The following constrained least-square minimization can now be defined to solve the
inverse problem:

Find [t,]

to minimize ([C]{ td + [b] + [d] _[f.})T ([C] [t,) + [b] + :d] - [f.})

subjectto [OHt,} = [f}.

The least squares functional measures the difference between computed and input strains
in the L 2 norm, while the constraints enforce global equilibrium. Lagrange multipliers are
used to adjoin these constraints to the functionaL and the augmented functional is intro­
duced as:

(21 )

Differentiating F with respect to [q and i'i and setting the result to zero gives the following
constrained normal equations in matrix form:
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[C]T[C] [D]] :Dc] [D, ] :t,: [C]T ([1:] - {b: - {d:)
[D]]T 0 0 0 I.] I]

(22)
{Dc]T 0 0 0 I., I,

[D,)T 0 0 0 1. 1 I,

Numerical experimentation further reveals that the condition number of the system matrix
of eqn (22) is much smaller than that of eqn (I ). Therefore. the solution of eqn (22) is less
sensitive to the error in the measurements than the solution of eqn (I). This indicates that
the introduction of physical constraints has the desired effect of stabilizing results and
guiding the calculated traction toward the exact one. It should be noted that. in the process
of stabilizing the normal equations. these constraints enforce adherence to fundamental
physical principles.

NUMERICAL RESULTS

Three numerical examples are given in this section to validate the solution procedure
developed in the preceding sections. The strain input to the inverse problem is simulated
by a BEM forward analysis. To model measurement error. strains with up to ± 5% random
error are used as input in the inverse solution. In all cases. quadratic isoparametric boundary
elements are used. and constraint equations in eqn (19) are also evaluated using quadratic
shape functions. In the first example. a case is studied where specified nonzero tractions are
applied on portions of the boundary. thus [b} =I 0 in eqn (15). In the remaining two
examples {b} = O. The effect of the location of measuring points on the inverse solution
was discussed in a previous study (Zhang e( 01.. 1(94) and will not be addressed in the
following examples.

Example I
A square plate is considered in this example. The boundary conditions are shown in

Fig. 4(a). The linearly distributed normal traction on the right side surface is known. and
the normal traction on the top surface is the primary unknown. Thus. {b: must be evaluated
in this case. The tangential traction on the top surface is assumed to be zero. Strains are
known at three points shown in Fig. 4(b). and are used to determine the unknown traction
distribution on the top surface. Figure 4(b) also shows the BEM modeL which consists 16
quadratic elements. The computed traction distribution from exact strain input is shown

o

Me05--..Jrlrl'9 -41-
pOI~·ts

32

/

32

Fig. 4. Example I.
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Fig. 5. Computed normal traction from exact input strains.

in Fig. 5. and the exact solution is recovered. Random numbers are then generated within
the range of ±5% of the exact strain. and they are added to the exact strains to simulate
measurement errors. The exact strains and the strains with errors are given in Table I. The
unknown traction is then resolved using strains with simulated errors. Results are plotted
in Fig. 6 for two cases: with and without enforcement of physical constraints. Clearly,
results obtained without constraints are meaningless. while those obtained with constraints
are fairly close to the exact data. This clearly demonstrates the effect of the constraints in
stabilizing the solution of the inverse problem. and validates our formulation of the nonzero
boundary condition vector [b}.

Example 2
The same plate as in example I with different traction boundary conditions is studied

in this example. In addition to the normal traction, there are tangential tractions on the
top surface of the plate. as shown in Fig. 7. Both normal and tangential tractions are
assumed to be unknowns and need to be resolved from strain measurements at nine points.
This example can be regarded as a simulation of measurement of residual stress along a
cutting plane. With exact input strains. exact traction distribution is again obtained and
needs not to be reported. Computed tractions obtained using the proposed solution pro­
cedures and input strains with up to ± 5% random error are plotted in Fig. 8. Both
computed normal traction and computed tangential traction are in good agreement with
the exact distributions.

Table I. Exact strains and strams wIth ± 5(~'o mndom error in Example
1 (strains are obtained by assuming E = I)

Exact strain I:

Random number
between [- 5. 5] e

Strain with
error 1'(1-1'%)

-0.04940
-0.00575
-0.03867
-0.02956
-0.10227

0.01204
0.00211

-002895
0.05339

3.170
- 2.845
-2.165

2.205
- 1.181

1.060
-4.435

0.691
4.140

- 0.04783
-0.00591
-003951
-0.02891
-0.10348

0.01191
000221

- 0.02875
0.05118
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Fig. 8. Computed nonnal and tangential traction from input strains with up to ± 5% random error.

Example 3
The measurement of contact stress between two plates is simulated in this example.

The contact stress given by Chen and Chen (1992) is used to specify strain input at
measuring points. Frictionless contact is assumed in this example for convenience. Because
of symmetry, only half of the structure is modeled using BEM, as shown in Fig. 9. Since
the exact contact area is not known in advance, the area covered by the top plate is assumed
to be the potential contact area. There are 26 quadratic elements and II traction unknowns
in this example. Strains at five measuring points are used as input to the inverse problem.
The constraints introduced here have the effect of keeping the top plate in equilibrium.
Numerical results show again that simply solving eqn (I) does not reproduce the given
contact stress distribution. Plotted in Fig. lOis the result from the proposed inverse solution
with explicit enforcement of the physical constraints. The contact stress is accurately
retrieved. From the computed contact stress distribution, it is easy to determine that the
actual contact area extends IS em away from the center line.
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Fig. 10. Computed contact stress

CONCLUSIONS

A boundary element solution is developed for an inverse elasticity problem whose
purpose is to reconstruct an unknown boundary condition using internal strain measure­
ments as inputs. The calculation of the sensivitity matrix is embedded in the REM formu­
lation, and. therefore. the computational effort is significantly reduced compared to previous
studies. Further, by including the effects of prescribed non-zero boundary conditions and
body forces, the relation between measured strains and the primary traction unknowns
used in this paper is general. Constrained least-square minimization is used to solve the
inverse problem. In contrast to other regularization methods. the constraints introduced
here have clear physical meaning. In all numerical examples. the proposed inverse solution
reproduces the exact stress distribution with reasonable accuracy. All input used in the
numerical examples consists of numerically simulated strains superimposed with up to
± 5% random error. Corresponding experimental work is under way and will soon be
reported.
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